

JOHN E SIMPSON University of Cambridge

Second edition

GRAVITY CURRENTS IN THE ENVIRONMENT AND THE LABORATORY

323/3980 INSTITUT FÜR METEOROLOGIE U. KLIMATOLOGIE UNIVERSITÄT HANNOVER HERRENHAUSER STR. 2 - 30419 HANNOVER

Contents

Foreword xi Preface xii

1 The nature of gravity currents 1

- 1.1 Introduction 1
- 1.2 Dam break 3
- 1.3 Gravity currents 4
- 1.4 Bores 5
- 1.5 Internal bores 7
- **1.6** Solitary waves 9

2 Atmospheric gravity currents 11

- 2.1 Thunderstorm outflows 12
- 2.2 Frontal structure of a haboob 14
- 2.3 Atmospheric bores 21
- 2.4 Generation of bores 24
- 2.5 Development of a bore from a gravity current 25

3 Sea-breeze fronts 29

- 3.1 Formation and structure of sea-breeze fronts 30
- 3.2 Internal bores formed by the sea breeze 35
- 3.3 Sea breeze and pollution 37
- 3.4 Birds and insects at sea-breeze fronts 40

4 Gravity currents in satellite imagery 45

- 4.1 Use of satellites 45
- 4.2 Rope clouds 46
- 4.3 Ropes and cold fronts 49
- 4.4 Ropes in the sky 53
- 4.5 Hurricane ropes 56

5 Fronts and topography 59

- 5.1 The southerly buster 59
- 5.2 Other coastal trapped gravity currents 62
- 5.3 Katabatic winds and fronts 62

Contents

6 Environmental problems: atmosphere 66

- 6.1 Gravity current hazards to aircraft 66
- 6.2 Spread and dilution of a dense gas 69
- 6.3 Gravity currents of gases in mines 76
- 6.4 House ventilation flows 81

7 Gravity currents in rivers, lakes and the ocean 88

- 7.1 Ocean scale fronts 88
- 7.2 Fronts in estuaries 91
- 7.3 Fronts in fjords and lakes 94
- **7.4** Bores in the environment 95
- 7.5 Internal bores 99
- 7.6 Turbidity currents on the ocean bed 102

8 Industrial problems with gravity currents: oceanography 105

- 8.1 Power station effluents 105
- 8.2 Oil slicks 106

9 Avalanches 112

- 9.1 Types of avalanche 112
- 9.2 Snow avalanches 112
- 9.3 Rock avalanches (dry) 116
- 9.4 Debris and mud avalanches (wet) 118
- 9.5 Glaciers 122

10 Volcanic gravity currents 127

- 10.1 Basaltic lava streams 127
- 10.2 Pyroclastic plumes 128
- 10.3 Pyroclastic gravity currents 129
- 10.4 Mud flows or lahars 133
- 10.5 Eruption of Mount St Helens 135
- 10.6 The Lake Nyos gas disaster 136
- 10.7 Volcanic action on the ocean bed 137

11 The anatomy of a gravity current 140

11.1 The front 140

11.2 Inviscid-fluid theory 142

11.3 Effect of mixing on gravity current 144

11.4 Effect of friction 147

- **11.5** Head and tail ambient flows 152
- 11.6 Gravity currents meeting obstacles 155
- 11.7 Purging of fluid in a pipe 162

Contents

12 Spread of dense fluid 164

12.1 Lock exchange flows 164

12.2 Release of a fixed quantity of fluid in a rectangular channel 166

12.3 Radial collapse of a fixed quantity of fluid 172

12.4 Constant flux in a parallel channel 175

12.5 Constant flux, radial flow 177

12.6 Front moving along a free surface 178

12.7 Gravity currents on slopes 178

12.8 Gravity currents of high density ratio 180

12.9 Gravity currents over porous media 182

13 Ambient stratification 186

13.1 Two-fluid systems 186

13.2 Continuous stratification 197

14 Ambient turbulence 205

14.1 Turbulence experiments 205

15 Viscous gravity currents 213

15.1 Inertial and viscous regimes 214

15.2 The spreading of viscous gravity currents 215

15.3 Viscous flows on slopes 215

16 Suspension flows 218

16.1 Turbidity currents 219

16.2 Air suspension currents: fluidisation 221

16.3 Initiation of turbidity currents 224

16.4 Summary of suspension processes 225

17 Gravity currents on a rotating earth 227

17.1 Coriolis force 227

17.2 Rossby number 228

17.3 Spreading under gravity: no boundaries 229

17.4 Spread along a boundary 230

18 Numerical models of gravity currents 232

18.1 Marker-and-cell technique 232

18.2 Models of thunderstorm outflows 233

18.3 Analytical and numerical model 234

18.4 High-resolution models 236

Index 239